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INTRODUCT ION

This paper's primary audience is comprised of "educational policy makers," those men

and women at the federal, state, and local levels who establish the rules and regulations,

allocate the resources, and make many of the decisions that influence the way the American

educational system operates. In addition, this audience includes the advisees and lobbyists,

who provide information to the decision makers. My aim is to convince these individuals

to consult and listen to the advice of the mathematical sciences education community as

they make decisions about the teaching and learning of mathematics in our schools. In

constructing my argument, I have examined the recent growth and changes in the discipline

of mathematics, as well as current trends in the research on the teaching and learning of

mathematics. Thus, a second audience for this paper is the mathematicians, mathematics

educators, and mathematics teachers--the entire mathematical sciences education community

--who have been examining the developments within mathematics. Finally, this paper

addresses those educational researchers (other than those in mathematics education) who

use mathematics in their studies, including psychologists, cognitive scientists, and sociologists.

It is assumed here that the members of each of the three groups--policy makers,

mathematics educators, and educational researchers--are interested in and concerned about

what happens in schools. While each group is influenced by the current social and economic

revolution, however, each has responded to the pressures for reform in school mathematics

fi om a unique perspective. As a result, despite their common good intentions, each of

the groups has, on occasion, been ignorant, critilal, and even intolerant of others'

perspectives. My argument is based on a consideration of three R's-- Revolution, Reform,

and Research - -gag their effects on school mathematics. My hope is that the three groups

will learn to cooperate with one another so that their shared goal of real reform can be

accomplished.
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REVOLUTION AND THE PRESSURE FOR REFORM

Pressure for school reform is a product of the social and economic revolution that

is today wreaking havoc in Western society. Upheavals in industry and the economy have

spurred public awareness that we are moving into a new industrial age, variously called "the

information age" (Bell, 1973; Naisbitt, 1982; Toff ler, 1985), "the post-industrial age" (Bell,

1973), or "the super-industrial age" (Toff ler, 1985). Integration of the telephone, television,

and computer now permits instant transfer of information among people anywhere in the

world. This, in combination with the geometric growth of knowledge, particularly in the

mathematical sciences, is at the heart of this revolution whose impact promises to be as

dramatic as the shift that transformed an agrarian society of the 1800s into an industrial

society of the 20th Century. Economically, the consequences of this revolution are only

now being realized as market rivalries shift from within-country competition to between-

country competition. American auto manufacturing is a case in point Today, individual

manufacturers compete not only with their American counterparts, but with manufacturers

from a variety of countries (Japan, Germany, Korea, Yugoslavia, etc.) in a world market.

Jennings (1987) has recently argued this economic competitiveness represents "the Sputnik

of the 80s" in educational reform.

In terms of schools, one must first understand that the salient feature of this revolution

is that information is the new capital and the new raw material. Like urbanization, which

is defined as a population shift that brought more than 50% of Americans to live in urban

areas, identification of a predominantly information-based economy usually is linked to the

point in time at which more than 50% of the population was earning its living through

the sensible linking and exchange of information. The validity of this statistical definition

is open to question; the concept is not (Naisbitt, 1982).

The works of several authors (Naisbitt, 1982; Shane & Tab ler, 1981; Toff ler, 1985;
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Yevennes, 1985; Provenzo, 1986) suggest the attributes of the new age. Naisbitt's (1982)

key points characterize the shift to an information society

1. It is an economic reality, not merely an intellectual abstraction.

2. The pace of change will be accelerated by continued innovation in communications

and computer technology.

3. New technologies, which will be applied first to traditional industrial tasks will

soon generate new processes and products.

4. Basic communication skills will become more important than ever before,

necessitating a literacy-intensive society. Information has value only if it can be controlled

and organized for a purpose. To tap the power of computers, it is obligatory first to

communicate efficiently and effectively, to be both literate and numerate. In addition, in

an environment of accelerating change, the approach of training for a lifetime occupation

must be replaced by learning power, which also depends on the abilities to understand

and to communicate.

5. Concurrent with the move from an industrial society to a society based on

information is awareness of the change from a national economy to a global economy.

This change is accompanied by the perception that the United States and other advanced

societies of the West are losing their industrial supremacy. Mass production is more cheaply

accomplished in the less developed parts of the world. Toff ler (1985) envisioned the change

as a . eries of waves, in much the same framework as Frederick Jackson Turner characterized

the westward movement of the frontier in North America. Thus, just as industrial society

replaced agrarian society and then began to push out, so the new post-industrial age will

replace industrial society in the West and gradually expand.

Unfortunately, schools and the mathematics taught in their classrooms are products

of the past relics of the Industrial Age. This paper proposes that schools and the

mathematics taught in them need to be chanted. In fact, radical changes in mathematics,
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as well as teaching approaches and organization, are necessary if students are to become

productive citizens in the Information Age. All students must have an opportunity to learn

the practical mathematical concepts and skills needed for everyday life, for intelligent

citizenship, for vocations, and for human culture in an age centered on information rather

than industrialization.

Whv Curren, Schooling is Inadeauate

In the industrial society of the late 19th century, it may have been frugal to educate

the populace in accordance with the structure of the economy. An elite, well-educated

group established policy, directed the government, managed industry, and advanced the

scientific and technological base; the remainder of the population provided the physical

labor for production and services, and was educated only to the level required for reliable

performance. As a result, a dual school system of "high literacy" and "low literacy" schools

evolved (Resnick & Resnick, 1977). When the U.S. was formed, its village schools reflected

the notions of literate citizenship appropriate to the new nation. The educational system

that evolved during the 19th century focused largely on elementary schooling, producing

the sharp distinction between elementary and secondary education that persists today.

Most children attended school for up to eight years, but few went on to high school.

The "low literacy" curriculum at the elementary school focused on the basic skills of reading,

writing, and computation; in fact, the foundation of this mathematics curriculum was

"shopkeeper" arithmetic.

The political conditions under which mass education developed encouraged the rout-

inization of basic skills and stands' dized teaching. Standardization was a means of insuring

that a minimal curriculum standard would be met, that teachers would be hired on the

basis of professional competency rather than political or familial affiliation, and that those

responsible for the expenditure of public funds could exercise orderly control over the

process of education. This notion of standardization also jibed well with prevailing Industrial

6



5

Age theories about the efficiency and effectiveness of rourinization (Bobbitt, 1924; Charters,

1924; Rice, 1913).

At the other extreme, the academic high school maintained a tradition of scholarly,

cultural, and scientific high literacy. Students were prepared for academe and policy making.

This is n3t to suggest that all were educated to the level of advanced academic study; it

did mean that all were rigorously educated, to whatever level elected, in such a way as

to prepare for that option.

This dual educational system may have served the Industrial Age of the 19th and

early 20th centuries reasonably well. Unfortunately, many of the traditions embedded in

this dual system have been resistant to change and persist today, including age-graded

classrooms, differential schools, primary-grade tracking, licensure of ger.eral teachers,

competence at paper-and-pencil arithmetic, general mathematics as the terminal -ourse

for non-college intending students, and pre-calculus mathematics for college intending

students.

The most serious failing of this dual educational system is that many students are

denied the opportunity to study any mathematics except arithmetic. Today, such basic

mathematics training is not enough. In particular, many groups frequently denied equal

participation in our society--including women, blacks, Hispanics, and those of low

socioeconomic background--must be encouraged to study more mathematics. Because our

society will need the full participation of all of its citizens if it is to enter a post-industrial

era, educational innovations must create the conditions by which such traditionally excluded

groups can be included. Absent such concerted effort, the role of mathematics as a filter

that excludes groups from prestigious positions in our society will heighten as the importance

of mathematical literacy increases.

Bleak national performance data are yet another indication of the inadequacy of current

educational practice. Results from the National Assessment of Educational Progress (NAEP)
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in mathematics (Carpenter et al., 1987), for example, show that while most students are

reasonably proficient in computational skills, the majority do not understand many basic

concepts and are unable to apply the skills they have learned in even simple problem-solving

situations. Add to this the fact that our students do not fare well when compared with

students in other industrialized nations, particularly those in the Orient (Mc Night et al.,

1987). We expect less of our students, they spend less time studying mathematics, and

fewer are enrolled in advanced mathematics than are students in other countries.

In addition, the "shopping mall" high school (Powell, Farrar, & Cohen, 1985), which

is intended to provide all students an opportunity for education until they are 17 or 18

years of age, has been criticized as having a curriculum that has been homogenized, diluted,

and diffused to the point that the courses no longer have a central purpose (National

Commission on Excellence in Education, 1983). The "shopping mall" high school is inadequate

to the needs of the Information Age: while society is becoming increasingly heterogeneous

(Steen, 1986), such schools do not provide most students with adequate preparation for

productive citizenship.

Finally, in too many schools, routine instruction and scheduling demands, as well as

teachers' general working conditions, make it difficult to provide students with diverse

mathematical experiences. In most schools, mathematics class lasts about 43 minutes, about

20 minutes of which is devoted to written work. A single text is used in whole-class

instruction. The text is followed fairly closely, but students are likely to read, at most,

one or two of the five pages of textual materials other than problems For students, the

text is primarily a source of problem lists (Conference Board of Mathematical Sciences,

1975, p. 77). The daily sequence of activities has been described as follows:

First, answers were given for the previous day's assignment. The more difficult

problems were worked at the chalkboard. A brief explanation, sometimes none

at all, was given of the new material, and problems were assigned for the next

b
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day. The remainder of the class was devoted to students working independently

on the homework while the teacher moved about the room answering questions.

The most noticeable thing about math classes was the repetition of this routine

(Welch, 1978, p. 6).

These observations suggest that a mathematics teacher's work is largely managerial or

procedural in that the "job is to assign lessons to their class of students, star: and stop

lesson, according to some schedule, expla:1 the rules and procedures of each lesson, judge

the sctions of students during the lesson, and maintain order anz.' control throwjhout"

(Romberg, 1985, p. 5). In such situations, the teaching of mathematics involves too little

care or reflection. Too many teachers feel obligated to cover the book. Too few teachers

recognize that student mastery of mathematical methods and their application to problem

solving is the primary goal of instruction. It has long been the case that most mathematics

teachers at the elementary school level have had inadequate mathematical training. Today,

however, growing numbers of teachers at the secondary school level also are under-prepared.

To meet current shortages, many teachers now are being licensed with minimal preparation

--a problematic situation that can oniy worsen over the next decade if current trends in

teacher education continue. Furthermore, teachers tend to be isolated in their own

classrooms, with little opportunity to share information with other staff members and little

access o new /knowledge (Tye & Tye, 1984).

The most important feature of schools is that schooling is a collective experience:

For the student, being in school means being in e crowd; for the teacher, being in school

means being responsible for a group of students. Thus, the issue of how a small number

of adults can organize and manage a large number of students is the central institutional

problem of schools. Furthermore, despite social resources adequate to the task, the education

and training of all students has not been a top priority in the nation's school systems;

instead, schools seem designed to relic, 3 the home of its school-age children for several
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hours each day and to train the children to keep quiet. Timid supervisors, bigoted

administrators, and ignorant scf.00l boards often inhibit real teaching, and commercially

debauched popular culture makes learning disesteemed. The academic curriculum has been

mangled by the demands of both reactionaries and liberals. Attention to individual students

is out of the question, and all the studert.ithe bright, the average, and the dull--are

systematically retarded one way or another, while the teacher's hands are tied.

In summary, the Holmes Group (1986) described this view of instruction as "passing

on' a substantive body of knowledge. . . . 'planning, presenting, and keeping order' .

. The teachers' responsibility basically ends when they have told students what they must

remember to know and do" (pp. 27-28). This succinct characterization of the role and

work of teachers stemmed from an objective view of truth; an iconic, formalistic view of

knowledge; the notion of the learner as a product; a stimulus-response view of learning;

and the need to efficiently prepare the majority of students to fit smoothly into a mass-

production economy.

Each of these assumptions has changed. Truth is now regarded as a social construction;

the prevailing view of knowledge is constructivist rather than formal; the learner is viewed

as an active participant rather than a product; psychology has progressed beyond behaviorism

to cognitive science and models of how information is processed and knowledge is constructed;

social progress depends upon a citizenry that can continue to learn and adapt to rapidly

changing circumstances in order to produce new knowledge. In sum, values have changed,

and notions of effective instruction also must follow suit. Such a practical and ideological

transformation is critical in 1:he face of the personal, national, and global problems that

are an inevitable by-product of the social and economic revolution currently underway, a

revolution whose s.acc..es and survival depend upon an adult population able to learn and

adapt as a result of their confidence in their own personally created and firmly founded

understandings.
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REFORM

Next, let me summarize briefly the typical reactions of the three groups--mathematics

educators, educational researchers, and educational policy makers--to the calls for reform.

Admittedly, these descriptions are not specific enough to reflect the variations in response

that actually are occurring. However, what emerges is the clear difference in perspective

in the grows' reactions to the revolution and process of reform.

Reactions by Mathematics Educators

As trained mathematicians, members of the mathematical sciences educaion community

have reacted to the revolution and its concurrent calls for reform by considering the impact

they have had on the discipline of mathematics and the uses to which mathematics has been

put. They reject the notion that mathematics is a static collection of an overly fragmented

set of concepts and skills, and characterize it instead as a dynamic, growing, and changing

discipline. In fact, with the possible exception of the impact of word processing on writing,

no other discipline has been as profoundly effected by the computer and the calculator.

Lynn Steen (1988), currently Chairman of the Conference Board of Mathematical Sciences,

argues that

The rapid growth of computing and applications have helped cross-fertilize the

mathematical sciences, yielding an unprecedented abundance iew methods,

theories, and models.... No longer just the study of number and space, mathematical

science has become the science tf patterns, with theory built on relations among

patterns and applications derived from the fit between pattern and observation.

(p. 611)

Given this explosion of knowledge, it k essential that school mathematics focus explicitly

on the fundamental knowledge needed for contemporary mathematics. For school programs,

the content must be selected carefully and must emphasize fundamental knowledge needed

for contemporary mathematics. To illustrate the changes occurring in mathematics and
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their potential impact on school programs, let us look at changes in technology and

applications.

Technology. Most current school mathematics programs fail to reflect the impact of

the technological revolution affecting our society. The availability of low-cost calculators,

computers, and related new technology have already dramatically changed the nature of

business, industry, government, sciences, and social sciences. Unfortunately, I:lost students

are not educated to participate in this new society. Despite the advancements that have

brought untold computational and graphical power to our fingertips, in-school hours are

spent drilling on computational procedures in arithmetic, algebra, statistics, and even calculus

--despite the fact that any step-by-step procedure involving he manipulation of mathematical

symbols according to a fixed set of rules can be accomplished by a calculator or computer.

Some procedures are simple enough that they are best done mentally or by hand; others

are more complex, or take time to work manually and should be done by machine, as they

are in the world of work.

Application& Complementing the influence of technology on mathematics is the fact

that the use and application of mathematics have expanded dramatically. Quantitative

and logical techniques have permeated almost all intellectual disciplines and change has been

particularly great in the social and life sciences. The computer's ability to process large

sets of information has made quantification possible in such areas as business, economics,

linguistics, biology, medicine, and sociology. Furthermore, the fundamental mathematical

ideas pertinent to such research are not necessarily those studied in the traditional algebra-

geometry-precalculus-calculus sequence.

In summary, changes in technology, a broadening of the areas in which mathematics

is applied, and growth in mathematics itself have transformed the problems important to

mathematics and the methods mathematicians use to investigate problems. These changes
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must be echoed by changes in the school cur, icrlum so that students have an opportunity

to the skills and knowledge that are likely to be fundamentally important in their lives

Mathematical Literacy. Upon refleclon, mathematics educators have reacted to the

pressures for reform by propwing a response labeled "mathematical literacy," which challenges

the traditions of current mathematics instruction. This response is reflected in such

documents as the NCTM Curriculum and Evaluation Standards (1987) and the AAAS project

2061 report, What Science is Worth Knowing (1987).

If we adopt Steen's (1988) position that mathematics is the "science of patterns," then

roathematicyl literacy involves leari....ag to communicate in accordance with the terms, signs,

symbol- Ind rules for use of a language. All students must learn to read, write, speak,

anti linen to messages in that language in order to communicate with others about its

patterns Furthermore, they must understand that the origins of the signs, symbols, and

rules, as well as their development, are situation dependent. To illustrate, we must first

realize that mathematical knowledge arose from rudimentary ideas acquired through perception

of situations in the complex physical world. Many millennia ago, our ancestors planted

tha seed of mathematics by observing several quantitative and spatial regularities. From

these humble beginnings, mathematics has flowered into the impressive body of kn "wledge

we have been fortunate enough to inherit. Thus, from its origins, mathematics was an

empirical science. Its fundamental terms, signs, symbols, and rules are merely abstractions

and inventions created to represent properties observed in the environment. Thus, numbers

were created to represent the numerosity of sets of familiar objects, signs such as "+"

were invented to represent the quantity found by the joining of sets, and terms such as

maid and nernendicular were introduced to name spatial properties. The purpose of

such a language is communication with others; the terms of the language are useful only

when their meanings are shared. Thus, mathematics is a language created by man and a

set of rules for the use of that language. Its origins are to be found in the regularities

1 3
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of the world in which we live. Furthermore, like any language, mathematics grows and

changes as a result of empirical investigation. To be literate, all students must confront

a rich array of problem situations from which the empirical language of mathematics, its

notation, and its rules can gradually be built, and they must come to understand a shared

meaning for those terms.

In addition, a good deal of mathematical knowledge has been created through the

investigation of this empirically based language and set of rules. By observing the properties

of numbers, operations, and spatial figures, for example, humans have applied abstraction

and invention to create another set of terms, signs, symbols, and rules. Some are general-

izations of empirical procedures; the creation of computational algorithms for empirical

processes, for example, has made mathematics applicable to minty seemingly unrelated problem

situations. In addition, no longer bound by perceptual reality, man has extended mathematics

by asking "What if...?" questions. For example, while the creation of an equation for the

shortest distance between two points on a plane surface has empirical origins, the

generalization of this formula to two points in n-dimensions does not. And while

multiplication of whole numbers has its roots in the grouping of objects empirically, more

abstract multiplication algorithms do not instead, they grew out of observations about

properties of exponents such as ax . a7 .. ax+7 and the fact that any decimal number can

be expressed as an exponent through use of powers of 10. Thus, mathematics involves

the study of abstract systems that grow as a result of investigating other problem situations.

Hence, to be mathematically literate, all students must have the opportunity to explore

the properties of the empirically derived mathematics and to understand the relationships,

rules of transformations, extensions, and structures derived from these investigations.

Another critical aspect of mathematics is the set of mathematical methods or thinking

skills mathematicians use when developing conjectures, reasoning about phenomena, building

abstractions, validating assertions, and solving problems. For example, no proposition is
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considered a mathematical product until it ha:. been validated. Justifications may initially

be built upon empirical evidence since they are based only on our perceptions, but, proof

of an assertion by rigorous, logical argument has become the hallmark of abstract mathematics.

For example, no geometer who had measured the base angles of an isosceles triangle would

conclude that they were congruent based solely on a demonstration no matter how accurate

the measurements, although such measurements may have formed the basis of a conjec-

ture about their congruence. Mathematicians demand that this result be deduced from

the fundamental concepts of geometry. Furthermore, the discipline grows by applying these

mathematical methods to a wide variety of problem situations. To be mathematically literate,

the students need to make conjectures, abstract properties from problem situations, explain

their reasoning, follow arguments, validate assertions, and communicate results in a meaningful

form.

Finally, the power of mathematical knowledge is that it is useful in many problem

situations quite removed from those to which it was originally applied. For example, while

paper-and-pencil computational algorithms for such tasks as addition and subtraction are

no longer the central focus of applied mathematics, the decision sequence involved in

algorithms is an important conceptual tool that helps address structural properties of

operations, which has led to the study of operator algebras. In turn, the study of such

operations has made it possible to simulate computationally a vast array of complex problems,

such as flow of blood through an artificial heart valve, the trajectory of a hurricane as

it approaches a coastline, and tomographic images of the mantle of the earth. In fact,

the building of mathematical models and the computational simulation of complex situa-

tions are now commonplace. As the sciences move increasingly toward computational methods,

so too must the mathematics curriculum.

This picture of mathematical knowledge, related to what it means to be mathematically

literate, is quite different from the experiences of students in typical classrooms, where

15
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they have most often worked on sets of mathematical exercises to get correct answers.

Mathematics is a foundation discipline for other disciplines and grows as a result of its

utility. To be mathematically literate, students must be confronted with a variety of problems

from other disciplines and have an opportunity to build mathematical models, structures,

and simulations.

In summary, the mathematical sciences community has responded to the pressures

for change by reconsidering the content of school mathematics. Current proposals suggest

that all sttJents need to study more and somewhat different mathematics, and to encounter

and work on problems in considerably different ways.

E,eactions by Educational Researchers

Like mathematicians who reacted to the revolution in terms of its effects on mathe-

matics, researchers trained in other disciplines have reacted in terms of its impact on

their theories, and methods of investigation. For example, since the turn of the century,

educational psychology in the U.S. has been dominated by a behavioral, "black box" view

of how humans process information. Instructional tasks (stimuli) and observable behaviors

(responses) have been emphasized, with little attention to th ways in which information

presented in the tasks is actually ^7.7.1essed. Common metaphors included "the mind as a

muscle needing exercise," 'lam 1 aimo: *shaping behavior by reinforcement,"

and "fixed mental abilities." The pict/;e of current mathematics instruction in schools

reflects this behavioral orientation.

The information revr!atior. has irrevocably altered this viewpoint. Current models

of information processing and learning, which have been labeled "cognitive science," are

based on the metaphor that the mind is similar to a computer in that information is received,

stored, and processed by humans in ways analogous to computer functions.1 This metaphor

1This is not the place for a review of those models. Howard Gardner's book, 11.{
Mind's New Science (1985), is a thorough discussion of the history of this development
and Richard Anderson's treatise, The Architecture of Coanitioa (1983), is an excellent example

16
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of the mind as a computer has proven to have great heuristic power for psychological

research. Those that are of particular importance to the learning of mathematics include:

memory storage, cognitive modeling, domain specific knowledge, and instructional objectives.

Memory. The storage of information in memory is important in this context because

current research suggests that learning occurs when information entering the senses is

actively processed and related to previously learned information stored in a permanent

semantic and factual knowledge base. New information is fitted or assimilated into existing

cognitive structures in such a way as to provide a meaning, an explanation, an order, or

a logic for the experiences being witnessed or reflected upon by the learner. A consequence

of this assimilation process is that each individual's knowledge is uniquely personal.

Individuals process and link new information in unique ways and, hence, develop cognitive

structures that reflect a variety of perspectives of the same reality. Hewson and Posner

(1984) hypothesized three conditions necessary for the assimilation of new information: First,

the learner must understand the new information; second, the new information must be

reconcilable with existing conceptions; and third, the resulting accommodated structure

mint be useful. The potential for learning exists only when these conditions are satisfied.

In summary, these views about how information is stored, retrieved, and modified are not

reflected in mathematics classrooms.

Coanitive modeling. By reflecting on the capabilities of human problem solvers,

educational researchers have developed descriptive models of how information is processed

when solving complex problems, as well as computer simulations of that processing. These

models have been developed by reflecting on the capabilities of human problem solvers.

Although current mathematics instruction does not emphasize problem solving, there is

consensus that it should (NCTM, 1980, 1987). By examining think-aloud problem-solving

protocols of subjects solving simple kinematics problems, for example, it is possible to

of current theorizing in the field.

17
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design a production system reflecting their problem-solving behavior. Both strategy and

sequencing considerations can be built into the system. Production systems can be tested

to substantiate the degrecs to which the system reflects performance, by comparing the

protocols of the subjects with those of the production system on a wide variety of problems

within the capabilities of the system. Researchers have obtained remarkable similarities

between the protocols of individuals and their corresponding production systems (Simon &

Simon, 1978; Anderson, Green°, Kline, & Neves, 1981); these matches suggest the production

system's ability to model at least some cognitive behaviors. Furthermore, by making slight

modifications or additions to the production system of a novice, it is often possible to

model the problem-solving behavior of experts. "fferences in the cognitive structures of

experts and novices can then be studied by examining the modifications made in the

production system.

Domain specific knowledge. There is increasing consensus that improvement of the

capability to learn is inseparable from the specific domain of application. Again, rather

than the fragmentation of mathematical knowledge reflected in current texts and tests,

the interrelationship of ideas in specific domains is critical. Understanding in a complex

domain requires a great familiarity w;t11 its connections (Rissland, 1985); "good thinking

almost always involves articulation between knowledge and strategies" Pressley, 1986, p.

144). The purpose for which knowledge was created and the process by which it was acquired

are as essential as the formal structure of the ideas (di Sessa, 1979) because the mathematical

meaning of the parts of a situation is often derived entirely from the situation of which

they are a part (Lesh, 1985). More specifically, learning to solve problems embedded in

a situation is important because "effective thinking is th.. result of conditioaalized knowledge

--knowledge that becomes associated with the conditions and constraints of its use" (Glaser,

1984, p. 91)). The claims are that, if the situations are familiar, conceptions are created

from objects, events, and relationships in which operations and strategies are well understood.
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From this understanding, students construct a framework of support that can be drawn

on in the future, when rules may well have been forgotten but the structure of the situation

remains embedded in memory, as a foundation for reconstruction (Brainin, 1985).

instructional Objectives. Greeno (1987) has argued that formulating objectives of

instruction based on cognitive models that simulate performance in school tasks should

now be possible. Hayes (1976) has articulated this notion:

Cognitive objectives in education [are] intended to replace the more traditional

behavioral objectives. To specify a behavior objective for instruction, we state

a particular set of behaviors we want the students to be able to perform after

instruction, e.g., to solve a specified class of arithmetic problems or to answer

questions about a chapter in a history text. To specify a cognitive objective,

we state a set of changes we want the instruction to bring about in the students'

cognitive processes, e.g., acquisition of a particular algorithm for division or the

assimilation of a body of historical fact to information already in long-term

memory. (pp. 235-236)

Green (1987) also maintains that recent research on instructional objectives has

offered new insights into meaningful learning and the ways in which conceptual systems

change; this research emphasizes a more active role played by learners, and holds that

learning involves construction of knowledge, rather than its passive acquisition. Environments

that encourage the construction of knowledge include (a) collaborative settings in which

teachers and students work together to construct meanings and ideas; (b) settings in which

teachers or tutors function as coaches and models of the activities the students are learning

to engage in and (c) settings in which students engage in exploration of ideas and

environments.

Today, most educational psychologists view information processing as an essential aspect

of human behavior, and learning as an interactive process involving the assimilation of

1
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new information with what is already known. This "cognitive science" approach has orovided

powerful insights into cognitive processing, and memory capacity and storage. And while

it is premature to argue that findings from this work provide a definitive basis for redesign-

ing mathematics instruction, the results suggest new directions for a reform program.

Other educational researchers (e.g., sociologists, anthropologists, historians) have reacted

similarly to the revolution. Schools and schooling practices have increasingly become the

targets of many of these scholars; such topics as the "hidden" curriculum, differential

distribution of knowledge, managerial constraints to teaching, teacher deskilling. and "street"

math are under investigation. Furthermore, the revolution has prompted scholars to pose

new questions based on new models, and to investigate new ideas using innovative methods.

In summary, educational researchers from many disciplines are reacting to the information

revolution and its impact on their disciplines and their methods of inquiry--and many are

now studying schooling practices.

Reactions by Policy Makers

Of the three target audiences for this paper, I am least familiar with the group composed

of policy makers. Until I chaired the conference, "School Mathematics: Options for the

1990s" for the Department of Education and the National Council of Teachers of Mathematics

in 1984 (Romberg, 1984), my contacts with policy makers were casual. Since then, I have

been thrust by NCTM into the policy arena to serve on several occasions as a spokesperson

for school mathematics. Whether they be elected officials, administrators, bureaucrats, or

union officials at the federal, state, or local level, policy makers have the legal and fiscal

responsibility of making decisions about how schools operate.

At least six aspects of their task merit consideration. First, their work centers on

decision making: Budgets must be determined, school rules and regulations must be

established, credentials and requirements for administrators and teachers must be set, and

so forth. Often these decisions are made in the face of conflicting values, demands, and
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advice. Second, educational policy in America is diversified, because, by its very nature,

the educational system is local, rather than national. Since the Constitution of the United

States omitted reference to education, thereby leaving decisions about schooling to the

states, control of schools nas, for the most part, been assigned to local communities with

locally elected school boards. These boards hire administrators and teachers and approve

programs. Today, 15,248 school districts operate in the United States; shared state and local

control tind shared sta.', and local taxes that support schools have created vast differences

in the quality of programs, facilities, staff and teachers, both across and within states.

There is no national curriculum, no national set of standards for the licensing or retention

of teachers, no common policies for student assessment of progress or admission to higher

education. Decisions are made by a variety of persons at several levels. One consequence

of such diversity is that change is difficult. Third, policy decisions often are made quickly

to alleviate a perceived problem. The political context in which policy makers operate

require them to foster a public image of being in charge and on top of problems in response

to citizens' demands. Unfortunately, initial solutions often are no more than "band-aids"

that fail to address the underlying causes of the problem; with time, however, carefully

considered programs often follow such spontaenous responses. Fourth, information--whether

drawn from personal experience, judgments of colleagues or confidants, staff reviews, or

opinion polls (i.e., how will constituents react to alternatives)--is essential as each decision

is made. Even so, decisions will be made, based on whatever information is available even

if the quality of the information is suspect. Finally, all information is judged in view of

the political environment in which policy makers operate. Legislators filter input in terms

of their party's position and the concerns of voters, administrators listen to legislative

concerns, bureaucrats attend to what administrators say, and so on. Enmeshed in the system

are the administrative staffs, foundations, interest groups, and lobbyists who attempt to

influence decisions by providing information about both the decision to be made and the

21
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concerns of their constituents. A working knowledge of these key characteristics of policy

makers' activities and decision-making processes is critical if mathematics educators and

educational researchers are to exert influence on policy decisions.

The responses of this community to the revolutitsn can be analyzed as a series of

waves, each unique in terms of immediacy of response and the information used to justify

those responses. First wave responses during the past five years involved reacting quickly

to the intense political pressure created by such documents as A Nation at Risk (National

Commission on Excellence in Education, 1983). Legislators, chief state school officers,

and school boards called for increased requirements for graduation, more time spent on

mathematics and science instruction, more rigorous testing of students, testing teacher

competence, and so forth. The justifications for these actions were based largely on the

belief that the educational system needed more "effective and efficient" management. As

McNeil (1987) put it, this first wave was "the twenties revisited." For example,

At the district level, there was a real concern of unevenness, of equity, and

that algebra at this high school isn't really the same as algebra over here. So

let's have a standard district curriculum... Make all teacher lessons plans, confirm

to a system, and at the end of the semester, we at the district level will send

out the proficiency exam to see if teachers have covered their proficiencies

that were numbered and organized and rationalized in their curriculum. (pp.

11-12)

She goes on to argue that many states and districts

are legislating the teacher test, the student test, the curriculum based on the

student test--not done by curriculum people, but done by research and evaluation

officers who have some tests they can pull out of their folders. And for the

first time, even more than in the original social efficiency days, the first wave

reforms are locking in a structure that is depersonalizing teaching. (pp. 12-13).

22



21

Apple (1987) arguess that this first wave of response has emphasized educational accountability

rather than reform. While some of the recommendations for change have merit, the trend

has been toward increasing external control of schools.

In fact, these initial responses are likely to perpetuate an outdated mathematics cur-

riculum in the manner described in the classic satire, The Saber-Tooth Cur jog= (Peddiwell,

1939). Without change, we will continue to train shopkeepers who can perform some

procedural skills that are now better accomplished by calculators and computers every-

where in society except in its schools. The first wave, even if based on a narrow conception

of education, brought attention to the fact that the educational system is in trouble. To

make it a viable system for the future, major investments of time, money, and effort will

be needed.

The first wave was followed by a series of waves and counterwaves distinguished

not by chronology, but by such external considerations as funding source, or political agenda.

Given the diversity of the educational system, this is not surprising. At the federal level,

the second reaction was to commission a number of groups to study various aspects of

the educational system and to make recommendations for action. For example, the National

Science Foundation and the Department of Education have funded a variety of conferences

and commissions since 1983, related to school mathematics instruction. They include:

1. Two conferences on the mathematical sciences community's general response to

the calls for reform. These conferences produced complimentary reports, New Goals for

Mathematical Sciences Education (CBMS, 1984), and School Mathematics: Potions for the

an (Romberg, 1984).

2. A survey of mathematics and science teaching (Weiss, 1987).

3. Three projects that studied the ways in which a better monitoring system could

be developed. Reports of these groups are knormingInglicaloince
Ind Mathematics Education in Grades K-12 (Murnane & Raizen, 1988); Indicator Systems
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for Monetary Mathematics and Science Education (Shavelson, McDonnell, Oakes, & Carry,

1987), and The Monitorina of School Mathematics: Backaround Papers (Romberg & Stewart,

Eds., 1987).

4. A study group which examined national assessment practices and produced the

report The Nation's Report Card (Alexander & James, 1986).

The intent of these study groups has been to provide educational policy makers with

information. While it is premature to judge the impact of these reports, three related

problems have emerged at the federal level. First, while more reasoned than the first

wave responses, these reports make recommendations focused on segments of the educational

system rather than on the system as a whole. Second, part of this fragmentation reflects

the fact that these reports lack a coherent vision about schooling. In fact, the National

Science Foundation was criticized in a recent review of its educational policies for its

failure to synthesize and articulate its educational goals (Knapp, Stearns, St. John, & Zucker,

1987). Third, most of the reports have failed to take into account the impact of the

information revolution. In a recent review of the "indicators" reports, Anne Zarinnia (1987)

found that none adequately reflected the social and economic implications of the Information

Age. At the same time, Secretary of Education, William J. Bennett's vision of ideal schooling

(as described in James Madison Hiah School, 1987) reflects a value system rooted in the

practices of the schools of the present, thereby failing to realize that those institutions

also are in need of change.

Another wave reflects the perspective of reform of the foundations, labor unions,

and professional organizations involved in education. While these groups also have

commissioned studies of the nation's educational system that have included recommendations

for policy action, they have not been constrained by the same political considerations as

those that influence studies commissioned by the federal government. Important reports

related to mathematics instruction include:

24



23

1. Tomorrow's Teachers (1986) prepared by the Holmes Group, and

2. A Nation Preoared Teachers for the 21st Century (1986) prepared by the Carnegie

Forum on Education and the Economy, both of which examine the problems of teacher

preparation and licensure.

3. What Science is Most Worth Knowing (American Association for the Advancement

of Science, 1987) written by several groups of scientists. This document outlines the basic

knowledge the scientific community believes will be important in the next century.

4. Curriculum %DI Evaluation Ctandards for School Mathematics (NCTM, 1987) prepared

by the National Council of Teachers ,f Mathematics. This

statement that reflects the kind of changes the mathematics

are possible in the near future.

These reports present positions that are more academic,

working draft is a position

education community thinks

less constrained by practical

realities, and more radical in their recommendations than those articulated in the federal

reports. In addition, often they have tried to portray a more coherent vision about the

future. As a result, some of the recommendations conflict with those found in the federally

sponsored documents. Here again, it is premature to judge the impact of these national

reports.

Quite different waves of reform have occurred at the state and local levels. For

example, Michaels (1988) argues that the second wave of reform at the local level involves:

the individual school as the unit of decision making; development of a collegial,

participatory environment among both students and staff; flexible use of time;

increased personalization of the school environment with a concurrent atmosphere

of trust, high expectations, and sense of fairness; a curriculum that focuses on

students' understanding what they learn--knowing "why" as well as "how"; and

an emphasis on higher-order thinking skills for all students. (p. 3)
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Note that this is a markedly different agenda from that of the first wave. It focuses on

the school staff and the creation of a more personalized instructional environment, not

on management or accountability.

At least one counterwave- -the "neo-Ludd ' reaction to technology -- should be noted.

The workers who destroyed machines during the early phases of the Industrial Revolution

in England were known as Luddites, apparently because a series of letters threatening

English factory owners were circulated in 1811 under the .name Ned Ludd (Thomis, 1970).

Provenzo (1986) used the term to describe the opposition that has developed among many

people to the proliferation and increasingly widespread use of calculators and microcomputers

in our culture. However, this negative response is more than just a superficial reaction

to change: It embodies a reaction against the implicit cultural imperialism of the Information

Age. Bell (1979) has argued that "just as capital and labor have been the central variables

of industrial society, so information and knowledge are crucial variables of oost-industrial

society" (p. 168). If this is so, the control of knowledge will be the key to political and

social power in the next century. The development of computer systems implies the

development of data banks and systems for the organization of knowledge as well as hardware.

While this may, at first, seem a trivial issue, in fact it represents what may be a significant

form of cultural domination and imperialism. In a society in which computer literacy will

be an essential prerequisite to successful social functioning access to instruction and to

the use of computers will be critical. Microcomputers are expensive and relatively complex

tools; they are more readily available to the rich than to the poor. In fact, it is distinctly

possible that computer availability will perpetual!. and enlarge existing patterns of racial,

sexual, and social inequity.

In summary, policy makers at all levels of control within the diverse American edu-

cational system have reacted in various ways to the information revolution and the calls

for reform in the system as a whole, and particularly in school mathematics.
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RESEARCH

This document is replete with references to research. In fact, its content thus far

is founded upon a large body of research that has documented current defici'ncies in the

schooling system, described barien to reform, and suggested alternatives to current practices

related to the teaching and learning of mathematics. At this point, however, I want to

emphasize the development of new research agendas that are *facilitators of the reform

movement;" they are a necessary component of the education community's response to the

revolution. In so doing, two aspects of research merit mention--the importance of reliable

knowledge and the information and insights that can be derived from research--U research

agendas are really u. tve this role in the reform movement.

Reliable Knowledge

Given the broad consensus that changes are needed, a proliferation of claims and

counterclaims about the most appropriate actions, programs, and p)licies to be followed

seams inevitable. Larrstbaa (1945) argued that anyone who has surveyed the long history

of man's claims about knowing is "struck by the discrepancy between the pretentiousness

of most knowledge-claims and the small amount of evidence actually available with which

to back them up" (p. 82). Researchers make every effort to circumvent this stereotype

by admitting their ignorance, expending considerable effort gathering evidence so that

whatever information is acquired is reliable, and marshalling the evidence into well-argued

briefs to justify their assertions.

By reliable knowledge, I mean any claim to know that is substantiated as trustworthy

for some given purpose. The gathering of evidence and the construction of an argument

are the means by reitich researchers substantiate conjecture. 'Ms is an arduous and endless

task that requires a substantial amount of training and effort., in the more complex cases,

it taxes the patience add ingenuity of the most gifted thinkers. Nor does it, once achieved,
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stay finished and complete; it must be continually re-achieved, since both what constitutes

a reasonable argument and its given purposes change continually.

What can be learned from research

A report of research or a set of studies provides its readers with three fundamental

types of information: (a) the researcher's view about a phenomenon, (b) the way evidence

has been collected and organized about conjectures, and (c) the work's findings or conclusions.

The primary purpose of any research program is to make sense of a complex phenomenon.

The first step in such a program is to develop some model (framework, metaphor, etc.)

designed to capture what are important features of the phenomenon; all such models are

of necessity incomplete. Nevertheless, they are fundamental to the investigations that

follow, for it is from the model that conjectures are derived. Second, a research program

is established to systematically gather and report evidence to substantiate or refute those

conjectures. In this seise, every research result is descriptive in that its findings are about

its model. Finally, it is hoped that such research findings provide us with some understanding

of the phenomenon.

It must be noted that most past and contemporary research addresses a traditional vision

of schooling and literacy. For example, much research on effective teaching has been

based on predicting residualized-mean-gain scores on standardized tests. Such research

does not support the pursuit of reliable knowledge about the new vision of mathematical

literacy. New questions are now being posed with expectations of outcomes different from

those assessed on such tests. Research agendas for the future must address questions

and embody methods of gathering information pertinent to the reform.

In summary, research can provide reliable knowledge about important aspects of school

reform; the results, stated as principles, should provide an information base for the reform

movement. Current school mathematics operates within a coherent system; reform will

happen only if an equally coherent system replaces it. Information to be gathered via
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research must be related to the new conceptions of how mathematics is learned and taught,

as well as what it means to know mathematics and how mathematical knowledge can be

assessed.

SUMMARY OF IMPLICATIONS

The views articulated in this paper inhere a number of important implications for

its three audiences. Five key concepts should be reiterated:

1. The information revolution is not a myth, but a reality. As the world changes,

so must our schools and the mathematics that is taught in them.

2. Because of the revolution, the fundamental mathematical concepts and procedures

that students should learn also have changed.

3. The three audiences (as well as with other groups) need first to listen to one

another, and then to cooperate to bring about the needed reform in school mathematics.

In particular, the three groupsmathematics educators, . Jcational researchers, and policy

makers--can no longer operate in ignorance of the other groups' ideas and concerns.

Mathematics educators need to listen to researchers P. .ad policy makers. For example, the

most current mathematics curriculum development projects have paid scant attention to

the psychological literature; similarly, several recent projects directed by educational psycholo-

gists have failed to consider any changes in mathematics. They invo!ve good ideas from

the psychological revolution but have approached mathematics from a perspective garnered

from current textbooks and classroom practice. In the same vein, policy makers should

not base their recommendations for change on traditional notions of either mathematics,

psychology, or sociology of schools. Without efforts to adjust our perceptions to jibe with

the ongoing information revolution, the economic and social decline of this country is

likely to become a fact.

4. The mathematical sciences education community must build coalitions at the

national and state levels to make apparent to all the needed changes in school mathematics.
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At the national level, the Mathematical Sciences Education Board fulfills this role, and all

mathematics educators should support and help it to develop a coherent argument for change;

it is left to educators to establish similar boards At the regional or state level. Only through

the efforts of such groups will the public be alerted to the need for change and learn to

turn to these coalitions for information and advice. These key concepts are synthesized

in the recommendations that follow:

Recommendatiqaj,. A reasoned vision of the direction the country needs to take in

school mathematics needs to be developed. Mathematics professionals must cooperate to

develop a cohesive, reasoned vision of the reform in school mathematics necessary to prepare

students to be productive citizens in the 21st century.

Currently, for example, the vision set forth in James Madison High School (Bennett,

1987) is incompatible with that described in the NCTM Curriculum and Evaluation Standards

(1987). In fact, it is apparent that policy makers, mathematics educators, and educational

researchers hold different visions about the goals for school mathematics. Reform is possible

only if there is consensus on goals among all concerned parties.

Recommendation 2. A systemic framework to accommodate and organize reform efforts

toward this common vision must be developed.

Change that focuses on single elements (e.g., texts, tests, or teachers)--regardless

of its potential or soundness--is bound to fail. Policy makers also must recognize that

systemic effort will require them to address the related political infrastructure of schooling.

It will be particularly important to identify and remove barriers to reform; already it is

clear that reform is impossible without improvements in the status of teachers and the

working conditions in schools.

Recommendation 3. A change plan based on the vision and systemic framework must

be developed.
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The need for fundamentally different school mathematics is expressed in the vision

and systemic framework. A change strategy involves coordination of efforts toward achieving

the vision. The precise rise, tread, and shape of the steps to be taken will vary in multiple

ways, depending on fiscal and human resources and inclinations. A vision strategy, a systemic

framework, and identifiable steps toward the vision's attainment are critical. From this

perspective, school reform is a matter of timely, manageable, effective, and well-coordinated

steps toward an agreed upon vision, rather than a s1 iplistic choice between polarized options.

in conclusion, the emphasis of school mathematics must shift from drill in paper-and-

pencil computations to experience in examining patterns and learning to communicate about

them if our students are to be prepared to live in the next century. This shift will require

a fundamental restructuring of the educational environment from the current "transmission

of knowledge" model into one based on "stimulation of learning" The transition will involve

fundamental changes in content, modes of instruction, teacher education, and methods of

assessing student progress. The reform programs should make it possible for all students

to learn more and somewhat different mathematics. This can be accomplished only if the

groups identified here are able to work collaboratively on the important issues identified

in an agreed-upon long-range plan. The need for reform is understood; our challenge is

to make it happen.
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